

Robotyka z Arduino Alvik

Małgorzata Cudna UMCS 2025

Zobacz matematykę

Co dziś robimy?

POZNAJEMY ROBOTA

 Testujemy trzy wbudowane programy

PROGRAMUJEMY

 Budujemy własne programy w języku MicroPython

TESTUJEMY

 Uruchamiamy i testujemy programy, sterując robotem

Programy testowe

CZERWONY

- Programujemy ruch naciskając odpowiednie strzałki
- Potwierdzamy

ZIELONY

Robot utrzymuje odległość

od obiektu z przodu

• Start

- Koniec

NIEBIESKI

- Robot porusza się wzdłuż czarnej linii o szer. 2-3 cm
- Start
- Koniec

Program 1: mrugnij!

Chrome: lab-micropython.arduino.cc

from arduino import *
from arduino_alvik import ArduinoAlvik

alvik = ArduinoAlvik()

Na początku programu importujemy potrzebne biblioteki i tworzymy obiekt, który będzie kontrolować robota i jego elementy

Program 1: mrugnij!

```
def setup():
    alvik.begin()
```

```
def loop():
    print('mrugam...')
    delay(1000)
```

```
def cleanup():
    alvik.stop()
```

start(setup, loop, cleanup)

Definiujemy trzy funkcje:

- setup uruchomi się raz na początku
- loop będzie działać w pętli
- cleanup zostanie wywołana raz na końcu działania programu

Program 1: mrugnij!

```
def loop():
    print('mrugam...')
    alvik.left_led.set_color(1, 0, 0)
    alvik.right_led.set_color(1, 0, 0)
    delay(1000)
    alvik.left_led.set_color(0, 0, 0)
    alvik.right_led.set_color(0, 0, 0)
    delay(1000)
```


W funkcji loop dodajemy instrukcje, które będą ustawiały kolor obu światełek LED umieszczonych na górze robota. Kolory definiujemy w modelu RGB w zakresie 0-1.

Testujemy!

Przetestuj program

- Czy światełka robota mrugają?
- Jaka jest przerwa między błyskami świateł?

Modyfikuj

 Spróbuj zmodyfikować kod programu, aby światełka mrugały naprzemiennie na niebiesko i zielono

Eksperymentuj

Spróbuj stworzyć swój
 własny wielokolorowy wzór
 mrugających światełek :)

Program 2: rusz się!

def loop():
 alvik.move(1)
 delay(500)

alvik.rotate(45)
delay(20)
alvik.rotate(-45)
delay(20)

W funkcji loop mamy:

- jazdę do przodu
- skręty
- Jakie kąty skręcają w lewo a jakie w prawo?
- Jak można pojechać do tyłu?

Testujemy!

Przetestuj program

 Podnieś robota i zastopuj program, jeśli chciałby uciec i spaść!

Modyfikuj

 Aby program zadziałał po odłączeniu od komputera, zmień nazwę pliku importowanego w main.py

Eksperymentuj

 Wyłącz robota, połóż go na podłodze, włącz i gotowe!

Zaprogramuj krok robota godny Ministerstwa Dziwnych Kroków w hołdzie dla Latającego Cyrku Monty Pythona!

Eksperymentuj

dziwny krok? :)

Krok 5

• A jaki byłby Twój własny

alvik.move(distance_in_cm) alvik.rotate(angle_in_deg) # 90 stopni to skręt w lewo!

alvik.set_wheels_speed(left_rpm, right_rpm)

alvik.get_touch_left() # right, up, down, ok, center alvik.on_touch_cancel_pressed(alvik.stop)

W naszym programie można dodać obsługę przycisków, aby sterować startem/stopem programu

Program: dziwne kroki (krok 1)

```
from arduino import *
from arduino_alvik import ArduinoAlvik
                                                def loop():
alvik = ArduinoAlvik()
                                                  alvik.move(10)
                                                  delay(20)
def setup():
                                                  alvik.move(10)
  alvik.begin()
                                                  delay(20)
  while not alvik.get_touch_ok():
                                                  alvik.move(-10)
    delay(100)
                                                  delay(20)
def cleanup():
  alvik.stop()
```


alvik.on_touch_cancel_pressed(cleanup)
start(setup, loop, cleanup)

Testujemy!

Przetestuj program

 Czasami przycisk stopu
 trzeba nacisnąć parę razy, zanim zadziała, dlaczego?

Modyfikuj i eksperymentuj

 Stwórz własny dziwny krok dla robota!

MicroPython online 1

connect,

MicroPython online 2			 ✓ Arduino Lab for MicroPytho ■ ← → C □ lab-micropytho
Edytujemy kod programu i zapisujemy zmiany save . Uaktualni się lista plików.			
	E		boot.py demo.py finmuono hin
🗅 lib	<pre>/mixed_quercitron.py</pre>		hand_follower.py
🗅 boot.py	1	from arduino import *	line_follower.py
🕒 demo.py	2	from arduino_alvik im	🗅 main.py
🗅 firmware.bin	4	alvik = ArduinoAlvik(touch_move.py
hand_follower.py	5	alvik.begin()	
<pre>Ine_follower.py</pre>	7	print('Witaj świecie!	
🗅 main.py	8		
mixed_quercitron.py	9	aivik.stop()	
touch_move.pv			

MicroPython online 3

Uruchamiamy program ikoną **run** i czytamy komunikaty terminala. Po włączeniu Alvika zobaczymy komunikat funkcji **print**.

Programy działające dłużej możemy zatrzymać ikoną **stop** (jest obok run).

Świetna robota!

- https://docs.arduino.cc/tutorials/alvik/getting-started/
- https://lab-micropython.arduino.cc/
- https://courses.arduino.cc/explore-robotics-micropython/
- https://docs.arduino.cc/tutorials/alvik/api-overview/
- Obrazek 1: <u>icelandnews.is</u>
- Obrazek 2: <u>cdn.europosters.eu</u>

DOFINANSOWANO **ZE ŚRODKÓW BUDŻETU PAŃSTWA**

W RAMACH PROGRAMU Społeczna odpowiedzialność nauki II projekt: Matematyczne echa lessowych wąwozów

> DOFINANSOWANIE [125 730 zł]

CAŁKOWITA WARTOŚĆ [139 700 zł]

DATA PODPISANIA UMOWY [08.2023]

